Zum Inhalt springen

Density of states of random band matrices close to the spectral edge

Oberseminar Darmstadt

Datum: 22.05.2025

Zeit: 16:15–17:45 Uhr

Random band matrices are a natural model for studying the quantum 
propagation in disordered systems as they interpolate between random 
Schrödinger operators and Wigner matrices. We study the random band matrix 
ensemble introduced by Disertori--Pinson--Spencer, characterised by the 
variance profile associated with the operator $(-W^{2}\Delta+1)^{-1}$, 
$\Delta$ being the Laplacian on the three-dimensional lattice and $W$ being 
the characteristic width of the band. For any energy $E$ close to the 
spectral edge, namely for $1.8 <|E| <2$, we rigorously prove that the 
density of states follows Wigner semicircle law with precision $W^{-2}$, 
provided $W$ is sufficiently large, depending on $E$. The proof relies on 
the supersymmetric approach of Disertori--Pinson--Spencer, and extends their 
result, which was previously established for energies $|E| \leq 1.8$. Joint 
work with M. Disertori.

Referent

Luca Fresta, Universität Bonn

Ort

TU Darmstadt S2|15 Raum 401
Schlossgartenstr. 7, 64289 Darmstadt

Veranstalter

Technische Universität Darmstadt

Fachbereich Mathematik - Stochastik
Schlossgartenstraße 7
64289 Darmstadt
Telefon: +49 6151 16-23380
Telefax: +49 6151 16-23381
info(at)stochastik-rhein-mainde


Kooperationspartner

Goethe-Universität Frankfurt am Main, Johannes Gutenberg-Universität Mainz, Justus-Liebig-Universität Gießen

Für diese Veranstaltung ist keine Anmeldung erforderlich. PDF- Link