Dynamical Gibbs-non-Gibbs transitions for the continuum Widom-Rowlinson model
Oberseminar Darmstadt
Datum: 20.09.2018
Zeit: 16:15 Uhr
Abstract:
In this talk I will present results on the continuum Widom-Rowlinson model under independent spin-flip dynamics. The main interest lies in the analysis whether and when the time-evolved point process has an (almost) quasilocal specification, i.e., the Gibbs-property of the time-evolved measure. This study provides a first analysis of a Gibbs-non-Gibbs transition for point particles in Euclidean space. We find a picture of loss and recovery, in which even more regularity is lost faster than it is for time-evolved spin models on lattices. The model exhibts immediate loss of quasilocality in the percolation regime, with full measure of discontinuity points for any specification. For the color-asymmetric percolating model, there is a transition from this non-almost sure quasilocal regime back to an everywhere Gibbsian regime. At the sharp reentrance time $t_G>0$ the model is almost sure quasilocal. For the color-symmetric model there is no reentrance. On the constructive side, for all $t>t_G$, we provide everywhere quasilocal specifications for the time-evolved measures and give precise exponential estimates on the influence of boundary conditions. This is joint work with Christof Külske from the Ruhr-University Bochum.
Referent
- Dr. Benedikt Jahnel, WIAS Berlin
Ort
- TU Darmstadt | Raum S2|15 401
- Schlossgartenstraße 7, 64289 Darmstadt
Veranstalter
- Technische Universität Darmstadt
Fachbereich Mathematik - Stochastik
Schlossgartenstraße 7
64289 Darmstadt
Telefon: +49 6151 16-23380
Telefax: +49 6151 16-23381
info(at)stochastik-rhein-mainde
Kooperationspartner
Goethe-Universität Frankfurt am Main, Johannes Gutenberg-Universität Mainz