Lower tail bounds for local times of self-similar processes.
Oberseminar Darmstadt
Datum: 25.10.2018
Zeit: 16:15–17:45 Uhr
Abstract: I will demonstrate that $P(L(t)<1) ~ t^{-(1-H)}$, where $L$ is the local time at $0$ of any recurrent $H$-self-similar real-valued process $X$ with stationary increments that admits a sufficiently regular local time. A special case is the Gaussian setting, i.e. when the underlying process is fractional Brownian motion, in which the result settles a conjecture by Molchan [Commun. Math. Phys. 205, 97-111 (1999)] who obtained the upper bound $1-H$ on the exponent.
Referent
- Dr. Christian Mönch, Johannes Gutenberg-Universität Mainz
Ort
- TU Darmstadt S2|15 Raum 401
- Schlossgartenstr. 7, 64289 Darmstadt
Veranstalter
- Technische Universität Darmstadt
Fachbereich Mathematik - Stochastik
Schlossgartenstraße 7
64289 Darmstadt
Telefon: +49 6151 16-23380
Telefax: +49 6151 16-23381
info(at)stochastik-rhein-mainde
Kooperationspartner
Goethe-Universität Frankfurt am Main, Johannes Gutenberg-Universität Mainz